高一上册数学寒假作业及答案

2020-01-13 15:23:00   澳门威尼斯人网站     [ 字体: ] [ 澳门威尼斯人网站 ] [ 文档预览 ] [ 文档下载 ]

【导语】高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。今天澳门威尼斯人网站为各位同学整理了《高一上册数学寒假作业及答案》,希望对您的学习有所帮助!

高一上册数学寒假作业及答案(一)


  1.函数f(x)=x2在[0,1]上的最小值是()

  A.1B.0

  C.14D.不存在

  解析:选B.由函数f(x)=x2在[0,1]上的图象(图略)知,

  f(x)=x2在[0,1]上单调递增,故最小值为f(0)=0.

  2.函数f(x)=2x+6,x∈[1,2]x+7,x∈[-1,1],则f(x)的值、最小值分别为()

  A.10,6B.10,8

  C.8,6D.以上都不对

  解析:选A.f(x)在x∈[-1,2]上为增函数,f(x)max=f(2)=10,f(x)min=f(-1)=6.

  3.函数y=-x2+2x在[1,2]上的值为()

  A.1B.2

  C.-1D.不存在

  解析:选A.因为函数y=-x2+2x=-(x-1)2+1.对称轴为x=1,开口向下,故在[1,2]上为单调递减函数,所以ymax=-1+2=1.

  4.函数y=1x-1在[2,3]上的最小值为()

  A.2B.12

  C.13D.-12

  解析:选B.函数y=1x-1在[2,3]上为减函数,

  ∴ymin=13-1=12.

  5.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的利润为()

  A.90万元B.60万元

  C.120万元D.120.25万元

  解析:选C.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获得利润L=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,L为120万元,故选C.

  6.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的值为()

  A.-1B.0

  C.1D.2

  解析:选C.f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a.

  ∴函数f(x)图象的对称轴为x=2,

  ∴f(x)在[0,1]上单调递增.

  又∵f(x)min=-2,

  ∴f(0)=-2,即a=-2.

  f(x)max=f(1)=-1+4-2=1.

高一上册数学寒假作业及答案(二)


  1.函数f(x)=x的奇偶性为()

  A.奇函数B.偶函数

  C.既是奇函数又是偶函数D.非奇非偶函数

  解析:选D.定义域为{x|x≥0},不关于原点对称.

  2.下列函数为偶函数的是()

  A.f(x)=|x|+xB.f(x)=x2+1x

  C.f(x)=x2+xD.f(x)=|x|x2

  解析:选D.只有D符合偶函数定义.

  3.设f(x)是R上的任意函数,则下列叙述正确的是()

  A.f(x)f(-x)是奇函数

  B.f(x)|f(-x)|是奇函数

  C.f(x)-f(-x)是偶函数

  D.f(x)+f(-x)是偶函数

  解析:选D.设F(x)=f(x)f(-x)

  则F(-x)=F(x)为偶函数.

  设G(x)=f(x)|f(-x)|,

  则G(-x)=f(-x)|f(x)|.

  ∴G(x)与G(-x)关系不定.

  设M(x)=f(x)-f(-x),

  ∴M(-x)=f(-x)-f(x)=-M(x)为奇函数.

  设N(x)=f(x)+f(-x),则N(-x)=f(-x)+f(x).

  N(x)为偶函数.

  4.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的值为8,最小值为-1,则2f(-6)+f(-3)的值为()

  A.10B.-10

  C.-15D.15

  解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15.

  5.f(x)=x3+1x的图象关于()

  A.原点对称B.y轴对称

  C.y=x对称D.y=-x对称

  解析:选A.x≠0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称.

  6.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________.

  解析:∵f(x)是[3-a,5]上的奇函数,

  ∴区间[3-a,5]关于原点对称,

  ∴3-a=-5,a=8.

  答案:8

  7.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx()

  A.是奇函数

  B.是偶函数

  C.既是奇函数又是偶函数

  D.是非奇非偶函数

  解析:选A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-x•f(-x)=-x•f(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函数;因为g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函数.

  8.奇函数y=f(x)(x∈R)的图象点()

  A.(a,f(-a))B.(-a,f(a))

  C.(-a,-f(a))D.(a,f(1a))

  解析:选C.∵f(x)是奇函数,

  ∴f(-a)=-f(a),

  即自变量取-a时,函数值为-f(a),

  故图象点(-a,-f(a)).

  9.f(x)为偶函数,且当x≥0时,f(x)≥2,则当x≤0时()

  A.f(x)≤2B.f(x)≥2

  C.f(x)≤-2D.f(x)∈R

  解析:选B.可画f(x)的大致图象易知当x≤0时,有f(x)≥2.故选B.

高一上册数学寒假作业及答案.doc
下载Word文档到电脑,方便收藏和打印[全文共2217字]
编辑推荐:
下载Word文档
相关推荐
友情链接:顶级娱乐城>